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Abstract
This paper presents the history of research and the results of recent studies on the effects of sleep deprivation in animals 
and humans. Humans can bear several days of continuous sleeplessness, experiencing deterioration in wellbeing and effec-
tiveness; however, also a shorter reduction in the sleep time may lead to deteriorated functioning. Sleeplessness accounts 
for impaired perception, difficulties in keeping concentration, vision disturbances, slower reactions, as well as the appear-
ance of microepisodes of sleep during wakefulness which lead to lower capabilities and efficiency of task performance and 
to increased number of errors. Sleep deprivation results in poor memorizing, schematic thinking, which yields wrong deci-
sions, and emotional disturbances such as deteriorated interpersonal responses and increased aggressiveness. The symp-
toms are accompanied by brain tissue hypometabolism, particularly in the thalamus, prefrontal, frontal and occipital cortex 
and motor speech centres. Sleep deficiency intensifies muscle tonus and coexisting tremor, speech performance becomes 
monotonous and unclear, and sensitivity to pain is higher. Sleeplessness also relates to the changes in the immune response 
and the pattern of hormonal secretion, of the growth hormone in particular. The risk of obesity, diabetes and cardiovascular 
disease increases. The impairment of performance which is caused by 20–25 hours of sleeplessness is comparable to that 
after ethanol intoxication at the level of 0.10% blood alcohol concentration. The consequences of chronic sleep reduction 
or a shallow sleep repeated for several days tend to accumulate and resemble the effects of acute sleep deprivation lasting 
several dozen hours. At work, such effects hinder proper performance of many essential tasks and in extreme situations 
(machine operation or vehicle driving), sleep loss may be hazardous to the worker and his/her environment.
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INTRODUCTION

Sleep deprivation consists either in a  complete lack of 
sleep during a  certain period of time or a  shorter-than-
optimal sleep time. The most common causes of sleep de-
privation are those related to contemporary lifestyle and 
work-related factors; thus the condition affects a consider-
able number of people. A chronic reduction in the sleep 
time or the fragmentation of sleep, leading to the disrup-
tion of the sleep cycle [1], may have consequences compa-
rable to those of severe acute sleep deprivation; this refer-
ring particularly to the cognitive functions, attention and 
operant memory [2–4]. The changes in sleep time across 
the circadian pattern [5], such as during shift work [6–9] 
or air travel (jet-lag syndrome resulting from changing 
time zones) [10], prove to be unfavourable as well. Many 
people also experience mild discomfort while adjusting to 

the daylight saving time. Sleep deprivation lasting as long 
as several days usually takes place in extreme situations or 
under experimental conditions. Sleep deficiency (insom-
nia) accompanies certain pathological states and may re-
quire treatment. Several types of sleep deprivation can be 
distinguished, as shown in Table 1.

Chronic sleep deprivation in humans
The first attempts at assessing the effects of long-term 
sleep deprivation date back to  1896. Three American 
volunteers were subjected to a 90-hour sleep deprivation 
during which one person experienced hallucinations [11], 
but it was not until the 1960s that organized series of tri-
als were performed on humans [12,13], yielding sleep de-
privation of one week. This type of studies makes it pos-
sible to evaluate the influence of progressive sleep loss 
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sound, and low motivation or little interest on the part of 
the participants [1]. The longest period of sleep depriva-
tion achieved in a human volunteer study lasted 205 hours 
(8.5  days)  [12,13]. During this period, alpha waves were 
absent in EEG recording, and during the waking state, 
the EEG signal resembled the  1  NREM stage. Since 
no method is available to keep the participants further 
awake, longer periods of sleep deprivation have not been 
yielded. A well-documented case of a long period of sleep 
deprivation is a  17-year-old male from California who 
endured 264 hours without sleep  [15]. He withstood the 
deprivation exceptionally well, which gave rise to a prema-
ture conclusion that long deprivation is relatively harmless 
to human health. A subsequent world record for the sleep 
deprivation was reported in May  2007; this time being 
claimed by a 42-year-old Englishman from Cornwall [16]. 

on human wellbeing and behaviour. The characteristics 
of consecutive nights of forced wakefulness [14] are pre-
sented in Table 2.
Generally, the clinical symptoms of sleep deprivation in-
clude longer reaction time, distractedness, disturbances in 
attention and concentration, forgetting known facts, dif-
ficulty in memorizing new information, and making mis-
takes and omissions. A higher level of stress is observed; 
tiredness, drowsiness and irritability increases; work ef-
fectiveness decreases and motivation usually falls down. 
Reasoning slows down not only during the night of sleep 
deprivation but also on the following day. Work effective-
ness decreases, particularly at the low points of the cir-
cadian rhythm and when the subjects perform long, dif-
ficult, compulsory, monotonous, sitting activities in an un-
changing environment with limited lighting, little supply of 

Table 1. Types of sleep deprivation and the causes of insomnia [1–10]

Types of sleep reduction Causes Comments/examples
Commonly observed 

reduction in sleep time 
Daily sleep time reduction below the 
level of optimal individual needs

Sleep time reduction is a common phenomenon resulting 
from contemporary lifestyle 

Single omission of night sleep  
(24-h wakefulness) 

Being on duty at work, taking care of an ill person, partying

Shifting sleep period in relation to 
the circadian pattern (shift work)

In shift work, the sleep time is not concordant with the 
biological rhythms and is usually shorter than that of the 
natural sleep. In air travel, rapidly changing the time zones 
results in the jet-lag syndrome 

Considerable reduction 
in sleep time 

Wakefulness prolonged to several days Experimental conditions, extreme situations (e.g. tortures), 
tribal shamanic rites 

Selective deprivation (only REM 
or 4-NREM sleep)

Experimental conditions, with polysomnographic 
assessment of the sleep stages and phases

Total sleep deprivation (extreme 
prolongation of wakefulness)

Only in experimental animals; the rats die after 16–21 days
of sleep loss on average, other species show lesser 
disruption in functioning after a comparable sleep loss

Sleep reduction (insomnia) 
due to  pathological 
processes

Depression, anxiety disorders In these disorders, the shallow sleep is delayed and 
shortened, not providing enough rest

Addiction (medications, alcohol) Insomnia is one of the symptoms of physical addiction; 
paradoxically, continuous intake of sleep-inducing 
medications makes the sleep pill-dependent; alcohol 
suppresses the REM sleep

Somatic, mainly painful diseases Restless leg syndrome, sleep-related breathing disorders 
and certain metabolic diseases (thyroid hyperactivity)  

Primary sleep disorders: idiopathic, 
psychophysiological and subjective 
insomnia

The causes: genetic determinants intensified by old age 
and improper sleep hygiene; chronic stress, traumatic 
experience, difficult life situations; inadequate subjective 
assessment of the duration and quality of one’s sleep
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need for sleep changes with age and to a certain extent de-
pends on gender and chronotype [17]. This demand varies 
across individuals, as some people need only 3–5 hours of 
sleep, whereas others need at least 8 hours of sleep per 
night to maintain work effectiveness. Hence, the term ‘de-
privation’ applies only to the cases when impaired func-
tioning due to sleep loss can be observed. The extent to 
which one experiences the effects of sleep deprivation de-
pends on individual needs. Most people declare that they 
need approximately 8 hours of sleep. Nonetheless, during 
a six-year questionnaire study involving over one million 
participants of both genders, the lowest mortality was re-
corded in a group sleeping 6.5–7.5 hours on average [18], 
which may be attributed to various reasons. Shortened 
sleep (but also the one that lasts too long) correlates with 
a probability of developing diabetes [19] and high blood 
pressure [20]. Notably, however, a higher risk of these dis-
eases is attributed to sleep deficiency. The sleep apnoea 
deteriorates the quality of sleep and thus contributes to 
an increase in the sleep time needed. Moreover, such 

The trial was performed despite the fact that this category 
had been excluded from the Guinness Book of Records. 
The result did not differ much from the Californian record 
(2 hours more), probably constituting the upper limit of 
human capabilities to withstand sleep deprivation. 

The duration and limit of sleep time
Sleep readiness (sleep latency, recorded every two hours 
from morning to evening) increases after a sleepless night 
and decreases after a  sleep period longer than the daily 
norm. The tolerated minimum sleep time is approximate-
ly  6  hours, although for some individuals, maintaining 
such sleep time over several days may result in a lower ef-
fectiveness of work performance. However, if this sleep 
time regime is kept for several weeks, no deterioration 
in the neurobehavioral function, apart from drowsiness, 
can be seen, which can be regarded as an adaptation to 
reduced sleep. Interestingly, prolonging the sleep time 
by 2–3 hours over  what is an individual daily norm, does 
not significantly enhance one’s general efficiency. The 

Table 2. Symptoms observed during consecutive nights of sleep deprivation in humans [14]

Duration of sleep 
deprivation Symptoms

Night 1. Most people are capable of withstanding one-night sleep deprivation, although a slight discomfort may be 
experienced. 24-h sleeplessness does not alter behaviour; however, tremor and increased tonus, leading to 
impairment in precise movements, can be observed.

Night 2. A feeling of fatigue and a stronger need for sleep is persistent, especially between 3 a.m. and 5 a.m.,  
when the body temperature reaches its lowest value.

Night 3. Performing tasks that require concentration and calculating may be impaired, particularly if the tasks are dull 
and repetitious. The volunteers become irritated and impolite in any instance of disagreement. During early-
morning hours, the subjects experience an overpowering need for sleep. Remaining wakeful is possible only 
with the help of the observers who wake the volunteers up if necessary.

Night 4. Prolonged microepisodes of sleep occur: the subjects discontinue their activities and stare into space; the 
delta waves are recorded in the EEG output signal, even if the person is awake. Sleep microepisodes impair 
performance of the tasks that require attention over a period of time. Subjects may also experience perception 
disorders, illusions, hallucinations, irritation, inaccuracy and the ‘hat phenomenon’ (a feeling of pressure 
around the head).

Night 5. The symptoms become more intense and include disturbances in reasoning and orientation, visual and tactile 
hallucinations, fatigue, irritability and delusions. The subjects may exhibit distrust: suspecting that someone 
attempts to murder them is a characteristic syndrome at this stage. Intellectual and problem-solving abilities are 
considerably impaired.

Night 6. Participants develop symptoms of depersonalization and they are no longer capable of interpreting reality. 
This syndrome is known as the sleep deprivation psychosis (very rarely persisting after the termination of the 
experiment; it usually subsides after a sufficient time of sleeping).
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findings did not reveal any cause of death  [28–30]. The 
animals which survived acute deprivation (that were 
eventually allowed to sleep) showed a dramatic compen-
satory increase in the REM sleep [31]. The other symp-
toms subsided within 24 hours, which indicates that the 
sleep deprivation did not exert destructive effects either 
on the cells, the neurons or the vital organs. Nonetheless, 
a complete recovery of the pre-deprivation levels of the 
particular sleep stages, or of the heart rate and body tem-
perature, lasted several days [32,33]. 
An interesting exception to the rule can be observed 
among marine mammals: despite the periodic, significant 
sleep restriction, they do not experience the recovery sleep 
that would be a typical reaction to prolonged wakefulness, 
as well as to 4 NREM or REM sleep deficiency, in terres-
trial mammals. The seals, for example, when staying in the 
ocean, can function well for several weeks despite the fact 
that they exhibit a considerably low duration of the REM 
sleep. Their sleep architecture changes immediately after 
they come back to the land.  Unihemispheric slow-wave 
sleep (characteristic of dolphins and whales) is replaced by 
alternate NREM and REM phases. The sleep time typical 
for terrestrial conditions is immediately restored, and no 
symptoms of developing the recovery sleep can be seen [34]. 
Similarly, no rebound sleep occurs in infant dolphins and 
their mothers who refrain from sleeping throughout the 
period from the delivery till the youngsters achieve some 
self-sufficiency, which can last several weeks  [35]. The 
ability to withstand sleep deprivation is dependent on the 
species-related natural sleep characteristics regarding the 
duration and quality of sleep. For instance, large ungulate 
herbivores have a  short, shallow and intermittent sleep, 
while predators usually sleep long and deeply. 
The relationship between sleep deprivation and the level 
of stress has not been fully explained, although the lat-
ter may have a  varying influence on the compensation 
for sleep deficits. In a  study reporting on wakefulness 
maintained through immobilization for  0.5 to  4  hours, 
the recovery sleep became significantly shorter when the 
immobilization period reached its maximal duration [36]. 
Two-hour immobilization repeated on the consecutive 
days of the experiment produced similar effects. However, 

conditions as depression (both in the shorter or prolonged 
sleep), heart diseases, poor general health, or even the be-
ginning of lethal processes preceding death, do prolong 
the sleep time, and at the same time, they may constitute 
a cause of higher mortality. The psychological profile of 
the short and long sleepers is also interesting: at the op-
posite ends of the U-shaped curve showing the death rate 
variability in relation to sleep time, there are ambitious, 
active, energetic workaholics, for whom sleep means 
a waste of time, and the sorrowful, depressive introverts 
who seek escape from life hardships into sleep. However, 
a possibility that the sleep duration itself may have influ-
ence on the capacity to survive cannot be excluded [18].

Total sleep deprivation in animals
The first report on the total chronic sleep deprivation in 
rats dates back to 1962 [21]. The animals were kept awake 
for 27 days, which led to aggressive behaviour, decreased 
body mass gain and impairment of the startle response. 
The most detailed analysis of sleep deprivation was based 
on data deriving from well designed, several-year ex-
periments conducted by Bergmann and Rechtschaffen 
[22–26]. The experiments were performed using the disk-
over-water method, with a rat being placed on a disk over 
a layer of water, and a polysomnograph signal setting the 
disk into motion whenever an initiation of sleep was re-
corded  [27]. The sleep deprivation obtained using this 
procedure made up 70–90% of the experiment time and 
led to the death of the animals within 2–3 weeks. In the 
course of the experiment, weight loss was observed de-
spite an increased food intake, as well as pathological skin 
reactions on the tail and paws and a bad condition of the 
fur. Initially, body temperature was elevated, but it de-
creased during the period preceding death. Plasma levels 
of the thyroid hormones decreased significantly and heart 
rate increased. At the same time, no stress symptoms, such 
as stomach ulcers, elevated ACTH or corticosterone lev-
els, or decreased metabolic rate, could be observed dur-
ing the experiment  [26,27]. Rats died within 11–32 days 
(16–21  days on average) from the onset of deprivation, 
a  period comparable to that of food deprivation with 
lethal effects (17–19 days). However, histopathological 
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sleep, the proportion of REM sleep increases (above 50%), 
mainly due to an increased number of REM episodes [36]. 
The compensatory period may last several days and is pro-
portional to the period of deprivation. Selective 4 NREM 
stage deprivation also leads to an increase in the percent-
age rate of this stage during the post-deprivation period. 
However, it is difficult to enforce a complete deprivation 
of the deep sleep since the number of delta waves tends to 
increase during the remaining sleep stages. Sleep disrup-
tion results in a greater need for PS sleep. The polysomno-
graphic recording of PS shows slow-wave episodes (lasting 
several dozen seconds) with atony and hippocampal theta 
rhythm [48]. The subjects show a depressive effect reflect-
ed by decreased reactivity. 

The consequences of sleep loss  
or sleep restriction

Tonus, posture maintenance and physical  
exercise capacity
An increase in muscle tonus compensates for the decreased 
attention during sleep deprivation and makes it possible to 
maintain the initial level of the test results [49]. Evidence 
for this finding comes from the observations concerning 
tired individuals who, when tested at late hours, showed an 
increased facial muscle tonus [50]. Higher muscle tonus is 
accompanied by tremor whose amplitude usually increas-
es under conditions of fatigue [51,52]. Twenty-four hours 
of sleep deprivation led to the disturbances in postural 
control which intensified with the duration of sleepless-
ness  [53]. A possible explanation may be the changes in 
the sensory integration that may be concurrent with the 
visual deficiencies caused by sleep deprivation [54]. Dur-
ing the sleep deprivation, stimulating the muscles involved 
in postural control with a  205-second vibration stimulus 
resulted in a false perception of movement and deteriora-
tion in maintaining body balance. Interestingly, the most 
significant balance disorders occurred after 100–150 sec-
onds of stimulation, which is a period sufficient to develop 
adaptation to such uncommon proprioceptive stimuli. 
The disruption was augmented after closing the eyes [55]. 
Assuming a  standing posture instead of the sitting one 

a  single  2-hour immobilization resulted in an  92% in-
crease in paradoxical sleep within the following 10 hours, 
whereas a 2-hour wakefulness, maintained using standard 
methods (disk or gentle handling), did not significantly af-
fect the sleep that followed [37]. 
Rats appear to be particularly vulnerable to sleep depriva-
tion enforced using the moving disk method, since in other 
animals (pigeons), the changes observed after 24–29 days 
of this procedure were not as severe as in rats [38]. Other 
deprivation procedures were not lethal either to rats or 
other laboratory animals  [39], although this may have 
been due to the significantly shorter periods of deprivation 
under other experimental conditions or to the difficulties 
in achieving total sleep deprivation. 

Post-deprivation recovery: rebound sleep 
Rebound sleep takes place after the sleep deprivation and 
is longer than the usual sleep time. It is composed of lon-
ger periods of the delta-wave sleep and REM sleep, while 
stage  2  NREM is shortened and stage  1  NREM may be 
absent [31,40,41]. The duration of the rebound sleep does 
not correspond to the total duration of sleep loss; the sleep 
lasting several hours more than usual may provide sufficient 
recovery even within the first 24 hours post-deprivation. In 
rats, REM deficiencies after 24 hours of sleep deprivation 
are compensated mainly during the initial period of recov-
ery, mostly within the light sleep phase, whereas the com-
pensation for NREM deficiency proceeds at a slower pace. 
The post-deprivation changes in the sleep may be present 
for several days [32], gradually losing their intensity. 
Selective REM sleep deprivation (waking up at the begin-
ning of REM episodes) makes the entry into REM more 
frequent: the longer the paradoxical sleep (PS) depriva-
tion, the higher the number of interventions necessary to 
prevent this sleep phase. This finding indicates a progres-
sive increase in PS propensity [42,43]. At the same time, 
selective REM sleep deprivation leads to the deterioration 
of cognitive functions. Annoyance, anxiety and difficulty 
in focusing attention result [44], while drowsiness during 
daytime does not increase [45]. Other symptoms include 
increased heart rate [33]. Apart from that, hypersexuality 
has also been observed in rats [46,47]. During the rebound 
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of work performance as well as impaired cognitive process-
ing. Work effectiveness decreases during sleep deprivation 
at consecutive experimental sessions, but also at a single 
session if the tasks are repetitious and monotonous. Well-
rested individuals can obtain similar results in a number 
of tests in a row, whereas during sleep-deprivation, the ac-
curacy of performance deteriorates with consecutive tasks 
in a particular series [59]. As reported in literature, one-
night sleep deprivation contributed to a 20–32% increase 
in the number of errors and a 14% increase in the time re-
quired to perform an electrocoagulation trial on a surgical 
laparoscope simulator  [66,67]. It is plausible that during 
a real surgical operation, the surgeon’s motivation partial-
ly compensates for the effects of weariness [59]. Nonethe-
less, the problem of insufficient rest among the health care 
workers seems to have been underestimated.
As far as the speech performance is concerned, the volun-
teers kept awake for 36 hours showed a tendency to use 
word repetitions and cliches; they spoke monotonously, 
slowly, indistinctly, and stammed. Owing to the intonation 
impairments and poor word choice after prolonged wake-
fulness, they were not able to properly express and verbal-
ize their thoughts and concepts [68]. Reasoning processes 
became schematic, which impaired the outcomes in the 
tasks that required flexible thinking and ability to resched-
ule plans  [69]. Innovation in thinking, as well as proper 
decision making, were less apparent, while there was an 
increasing tendency to take up risky decisions [70]. When 
presented with a series of situations that included a chang-
ing element each time, the persons examined tended to 
choose the same solution even if it did not strictly apply to 
the new context. 

Dermal effects
In the experiments on sleep deprivation, the characteristic 
alterations of the skin were reported only in rats [38,71]. 
Considerable idiopathic changes were localized within the 
tail and the hairless parts of the paws both during the to-
tal and selective deprivation of paradoxical sleep. It was 
postulated  that these effects might be linked either to 
the change in the release pattern of the growth hormone 
(GH, a hormone promoting anabolic processes), namely, 

during the experiment reduced the number of errors in 
the tests [56]. This effect, however, could not be seen be-
fore the 20th hour of sleep deprivation.
While a  24-hour wakefulness did not alter the maximal 
oxygen intake, the sleep deprivation lasting 36 hours re-
sulted in a decreased oxygen intake. Furthermore, sleep 
deprivation leads to decreased amplitude of the anaerobic 
power parameters across the circadian cycle. This finding 
could explain why moderate sleep loss is relatively well 
endured by sportsmen who practice running or the sports 
involving a brief use of a great force. In contrast, in the 
sports that require precise movements, attention, concen-
tration and frequent decision making (shooting, sailing, 
cycling, team sports), prolonged wakefulness results in an 
increased number of errors [58]. 

Exteroceptive impairments 
Sleep loss results in inaccurate image formation on the 
retina and, as a consequence, the perceived images be-
come dim, and double vision and the disruption of visual 
perception may occur  [59]. Visual disruption initially re-
sults in the tunnel vision [60], but may affect the centre of 
the visual field as well, if the period of sleep deprivation 
is long  [61,62]. The number of visual errors and halluci-
nations increases with the duration of wakefulness. Inter-
estingly, the number of auditory errors does not increase 
significantly even after 72 hours of sleeplessness [59]. Af-
ter 24 hours of sleep deprivation, the ability to distinguish 
scents deteriorates. However, paradoxically, the ability is 
augmented when the subjective drowsiness is higher [63]. 
Hyperesthesia or limb numbness may occur, as well as an 
increased sensitivity to pain, whereas the sense of temper-
ature remains unchanged. During the recovery period af-
ter sleep deprivation, the perception of pain is temporarily 
reduced [64,65]. 

Disruption in the effectiveness and accuracy 
of cognitive and operant processes
In the course of prolonged wakefulness, the concentration 
of attention becomes impaired [56], the thoughts are dis-
tracted and the microepisodes of sleep are longer [59]. 
Such effects lead to decreased accuracy and effectiveness 



CONSEQUENCES OF SLEEP DEPRIVATION        R E V I E W  P A P E R S

IJOMEH 2010;23(1) 101

tendency to go to bed at earlier hours, while in the older 
ones, to wake up later in the morning. 
Studies carried out on a  large population of forty-year
olds of both genders  [83] corroborated the existence of 
a U-shaped relationship between sleep duration and BMI 
or blood concentrations of cholesterol and triglycerides, 
which indicates that the risk of overweight is considerably 
more dependent on the reduction of sleep time. The re-
cently published results of a six-year research [85] indicate 
even more clearly that both the reduced and prolonged 
sleep time contribute to body mass gain. Among the sleep-
deprived individuals, the risk of gaining weight by  5 kg 
increased by 35% and the risk of obesity by 27% in com-
parison with the individuals having optimum sleep time. 
For prolonged sleep time, the risk of a 5-kg weight gain 
increased by 25% and the risk of obesity by 21%. Thus, 
both the deficiency and excess in the sleep time are re-
lated to the risk of weight gain and development of fatty 
tissue. 

Hormonal changes
Both in the total and selective deprivation of REM sleep 
in rats, the plasma concentrations of the thyroid hor-
mones, mainly thyroxine and triiodothyronine, decreased 
considerably  [86]. This decline is surprising in view of 
the increased metabolic rate and body temperature in 
the sleep-deprived animals. In humans, however, a  24-h 
sleep deprivation induced an increase in T3, T4 and TSH 
concentrations  [87]. The different duration of the sleep 
loss investigated in these studies makes it impossible to 
compare the two sets of data. Nonetheless, the analysis 
of diagrams illustrating the course of the experiment on 
rats indicates that the total sleep deprivation caused a de-
crease in T3 and T4 concentrations from the onset of the 
experiment. The deprivation of the REM sleep at first led 
to a  slight increase and then to a  significant decrease in 
respective concentrations. Notably, the human studies 
were performed mainly on depressive patients, and it is 
doubtful whether these can be regarded as a representa-
tive group of the whole population.
In animal experiments, after 72 hours of sleep loss, the lev-
el of the corticotropin-releasing hormone (CRH) changed 

the absence of the nocturnal maximal GH release in the 
sleep-deprived animals [72,73], or to a tendency for such 
animals to become infected with their own migrating bac-
terial flora  [74]. These conjectures are in contradiction 
with the findings indicating that REM loss does not disrupt 
the wound healing process [75]. The impaired recovery of 
the damaged skin is attributed to stress reactions [76], but 
since no considerable stress symptoms have been reported 
in the sleep-deprived rats [26,27], this process cannot ex-
plain the pathological skin condition after sleep depriva-
tion. 

Metabolic alterations, hunger and obesity
In animal experiments, sleep deprivation induced an 
increased rate of systemic metabolism, which led to re-
duced body mass despite an increased food intake, even 
if the animals were provided with food that was rich in 
proteins and calories  [29]. It is disputable whether the 
animals ate more food during the first few experimental 
days, since they might scatter or crumble the food pellets 
more during that time [77]. Nevertheless, the food intake 
increased by 29% when the sleep deprivation lasted lon-
ger than five days [78]. The sleep-deprived pigeons also 
showed weight loss accompanied by increased food intake 
and energy expenditure; however, to a significantly lesser 
extent than did the rats [38]. Considerably increased ap-
petite and hunger were also apparent in the persons who 
were allowed to sleep only four hours per night [79]. This 
was attributed to the decreased concentration of leptin, 
a hormone inhibiting appetite and hunger and inducing 
higher energy expenditure, and a higher level of ghrelin, 
acting in an opposite direction to leptin [80]. In contrast 
to the animal findings, a  relationship between reduced 
sleep and obesity was observed in humans [81–83]. Obe-
sity was accompanied by lower energy expenditure and 
impaired glucose metabolism leading to diabetic condi-
tion  [19,80]. The sleep loss-related tendency for weight 
gain was already apparent in the children and teenag-
ers  [84], and the BMI increase was significantly higher 
among younger children (3–8 years old) than the older 
ones (8–13 years old). Interestingly, the lower rate of 
body mass gain in younger children was related to the 
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after either total or selective sleep deprivation in rats [96]. 
However, even the authors themselves have found this 
outcome surprising. 
The sleep-deprived animals develop infections of the 
lymph glands and other tissues, which are induced by their 
own intestinal bacterial flora [74]. This can take place only 
in the state of immunological suppression. In rabbits in-
fected with Staphylococcus aureus, the deterioration in the 
quality and duration of the slow wave sleep correlated with 
an increased mortality rate [97,98]. Sleep deprivation re-
sulted in lower resistance to bacterial infections (bacterial 
blood infections), but no fever or tissue inflammation de-
veloped [98,99]. The data deriving from the human studies 
are inconsistent or contradictory [100,101]. While it is evi-
dent that sleep loss exerts an influence on the immune sys-
tem [102], it remains unclear whether the influence is ben-
eficial or detrimental. IgG, IgA and IgM concentrations 
were found to increase after a 24-hour wakefulness [103], 
and so was the number of leukocytes and NK cells as well 
as their activity during a 64-hour sleep deprivation. The 
number of T helper cells and NK cytotoxicity decreased 
as well [100,104,105]. Other data show a 37% decrease in 
the number of NK cells after 48-hour wakefulness [106]. 
Interestingly, while plasma concentrations of interleukin 
IL-1β and γ-interferon changed little during a  64-hour 
sleep deprivation, they decreased significantly on the first 
day following a 10-hour rebound sleep [100]. 

Changes in the activity of brain structures 
Sleep deprivation attenuates the functions of a  number 
of brain structures. During 72-hour wakefulness, a 6–8% 
decrease on average in the brain metabolic rate was ob-
served. However, in certain areas of the brain, this de-
crease could reach as much as 15%. Glucose hypometabo-
lism was apparent mainly in the thalamus, particularly in 
its dorsal part, as well as in the striatum, hypothalamus, 
prefrontal and frontal cortex (areas 44/45 and 46), pari-
etal, temporal, cingulate and primary visual cortex, and 
even in the cerebellum [59,107]. On the second and third 
day of sleep deprivation, a slight increase in the relative ac-
tivity was found in certain areas (18 and 19 visual areas as 
well as 4 and 6 motor areas), although the level remained 

depending on the brain area: CRH increased in the stria-
tum, limbic structures and hypophysis, while decreased in 
the hypothalamus [88]. During the late deprivation period 
at the second half of the experiment, the levels of ACTH 
and corticosteroids were found to increase. All the sleep-
deprived rats showed elevated levels of noradrenaline, 
which might indicate the deprivation-related augmentation 
of the sympathetic system. This would partially explain the 
increased energy expenditure [86]. In humans, a 24-hour 
sleep deprivation induced a high rate of ACTH secretion 
between 3 a.m. and 5 a.m. on the following night, while 
under normal conditions, the ACTH level shows a slight 
linear increase [89]. 24-hour hour wakefulness resulted in 
a slight increase in plasma cortisol level, while plasma al-
dosterone concentration and renin activity decreased and 
their release peaks were absent [90].
The influence of  24-hour wakefulness on GH secretion 
is particularly interesting. The typical maximum release 
peak, normally present during the first sleep cycle, could 
not be seen, whereas the total GH release remained 
unchanged  [72,73]. The physiological significance of 
the GH release peak at early nocturnal hours has not been 
elucidated. It also remains to be shown whether the lack 
of GH peak in the sleep-deprived subjects might be com-
pensated simply by an increase in the daily release of the 
hormone. Such considerations are justified by the findings 
indicating that during the rebound sleep, the GH release 
peak appeared earlier and achieved a higher level than the 
values obtained for the controls [89]. 

Immune system impairment 
A relationship between infectious diseases and prolonged 
sleep time as a symptom of healing has long been intuitive-
ly anticipated. It was presumed that cytokines, which are 
the mediators of the defensive immune response, might 
also be involved in the sleep regulation processes [91–93]. 
Interleukin IL-1β potentially acts both as a somnogen and 
pyrogen, which would explain the prolonged duration of 
sleep in the course of febrile diseases [94,95]. Classic re-
search conducted by Rechtschaffen and his team does not 
indicate, however, any mitogen-related changes in the pro-
liferation, number and activity of the spleen lymphocytes, 
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Simultaneous monitoring of the mental functions showed 
only a slight increase in the reaction time, and this finding 
supports the hypothesis that an increased activity of the 
frontal lobe may allow one to maintain the testing effec-
tiveness after sleep loss. Another set of data showed that 
after 36 hours of sleep deprivation, the application of the 
target stimuli resulted in a decreased amplitude of the P3 
component in the frontal and apical skull regions. Apply-
ing the novelty stimuli under the same conditions brought 
about a  decreased activity of P3 only in the prefrontal 
area [110]. The relocation of the cortical functions and the 
activation of the prefrontal regions, which was noted after 
sleep deprivation, may also be connected with the ability 
of these areas to recover within a relatively short time dur-
ing the rebound sleep. Within the first 30 minutes of the 
rebound sleep, the delta waves in the EEG recorded from 
the prefrontal area showed a  significantly greater power 
than those recorded from other areas [111,112].

Changes in EEG signal
EEG recording is used in various experiments on sleep be-
cause it provides an objective monitoring of the brain activ-
ity. The total power of the delta and theta waves recorded 
from the frontal, central and occipital regions was found to 
significantly increase within the first 24 hours of sleep dep-
rivation. However, assuming the standing posture allowed 
one to maintain the control power values even at the end 
of the second day of sleep deprivation. This referred main-
ly to the theta wave band [56,113]. While the total power 
in the delta and theta bands increased in proportion to 
the time of wakefulness, the increase in the total power of 
the alpha waves was not apparent before the 20th hour of 
staying awake  [56]. These findings not only describe the 
electroencephalographic characteristics of sleeplessness, 
but they also point to the role that the changing of body 
posture may have in counteracting the effects of sleep 
loss. The frontal and prefrontal gamma rhythm (40 Hz), 
related to the perception of auditory stimuli, was found 
to be attenuated as early as after 24 hours of sleep depri-
vation [114]. Another study made it possible to establish 
a ‘functional cluster’ of the EEG signal recorded from par-
ticular regions [115]. The functional cluster is a group of 

below the baseline value. No significant interhemispheric 
differences were detected. However, the left-sided hypo-
metabolism in  44/45 areas clearly indicated a  disruption 
in the functions of the motor speech centre. This finding 
was confirmed by behavioural observations. Alertness and 
cognitive functions weakened, which was attributed to 
a decreased activity of the connections linking the cortex 
and the thalamus. However, the functional magnetic reso-
nance revealed that the sleep-deprived participants showed 
activation of larger brain areas when performing certain 
types of cognitive tests than did the well-rested subjects. 
After 35 hours of sleep deprivation [108], the participants 
doing arithmetic tests showed a bilaterally decreased ac-
tivity of the prefrontal and parietal cortex, whereas at ver-
bal memory testing, they showed a higher activity in these 
areas, mainly in the right hemisphere. However, under 
control conditions, such tests activate mainly the tempo-
ral lobe. It is postulated that the activation of the cortex 
areas, which is not normally associated with a particular 
function, may help sustain the effectiveness of the test-
ing during prolonged wakefulness. This would explain the 
paradox of a greater capacity of short-term memory in the 
sleep-deprived individuals. The short-term memory is as-
sociated with the functions of the parietal lobes; therefore, 
the augmented activation of this area seems to facilitate 
the memorizing and analysis of information from differ-
ent parts of the brain. The rate of performance and preci-
sion of the verbal tests decreases due to a lower activity in 
the temporal speech area. The activation of a “substitute” 
area of the brain during the verbal tests, but not the arith-
metic ones, is difficult to interpret at present. A possible 
explanation is that the function of verbal communication 
precedes that of the ability to calculate: the sequence of 
the child development stages supports this view. The in-
creased activity of the prefrontal cortex, on the other hand, 
may have been connected with an augmented motivation 
in the course of the experiment  [59,108]. After a partial 
sleep deprivation, the application of the target stimuli in-
duced changes in the evoked potentials within the prefron-
tal cortex: the P1 component increased in EEG recorded 
from Brodmann’s areas 9 and 10, and the N1 component 
increased in areas 8 and 9 of the right frontal lobe [109]. 
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a  50-hour sleep deprivation, healthy volunteers showed 
decreased emotional intelligence and deteriorated inter-
personal relations (lower assertiveness, empathy and posi-
tive thinking) with enhanced esoteric reasoning, and they 
became more superstitious [119]. Fifty-five hours of sleep 
loss induced intense frustration and aggression, deteriora-
tion in interpersonal relations [120], as well as an increase 
in the subjective perception of affective symptoms of psy-
chopathology (anxiety, depression, mania, insanity) [121]. 
Survey studies conducted on male teenagers revealed 
a  correlation between sleep deficiency and elevated ag-
gression [122]. Moreover, an improvement in the quality 
of sleep mitigated the emotional problems.

Therapeutic applications of sleep restriction
In healthy humans, the sleep loss hinders maintenance 
of their normal functions. However, the situation may 
be totally different for people with CNS disorders who 
experience sleep disruption. Depressive disorders are 
often accompanied by difficulties in falling asleep as 
well as a  shallow and intermittent sleep or waking up 
too early in the morning. Notably, a  complete elimina-
tion of such sleep disorders usually alleviates the de-
pressive symptoms in  40–60% of cases. Aggravation 
of the symptoms concerns only a  very low proportion 
of people (2–7%)  [123,124]. First attempts at applying 
the sleep restriction therapy were reported in 1960s. At 
night, the patients would spend their time performing 
organized activities which allowed them to stay awake. 
Mood improvement was already apparent during early 
morning hours and continued throughout the day as well. 
Unfortunately, the subsequent sleep caused a relapse of 
the depressive symptoms (50–80% of relapses), although 
in some patients the improved mood would sometimes 
persist for several days or weeks. For a  number of pa-
tients (10–15%), it is no sooner than on the second day 
after sleep deprivation that the therapeutic effects of 
sleep loss can be observed. Since the improvement does 
not last long, attempts have been made to combine sleep 
deprivation with pharmacological treatment or the light 
therapy, or shifting the sleep time  [123]. Nonetheless, 
due to its simplicity and possibility of being repeated at 

brain areas that under specific conditions cooperate with 
one another more closely than with the remaining areas. 
In this case, the specific condition of brain functioning is 
sleep deprivation. 
In rested subjects, the symmetrical dominant cluster in 
the EEG signal included the F7, F8, C3 and C4 locations, 
whereas after  24  hours of wakefulness, the cluster com-
prised the C4, F8, F3, F4 and O1 locations, which indicates 
that after sleep deprivation, the F3/F4 and O1 locations 
are functionally associated with C4 and F8. The finding 
that the frontal locations within the functional cluster have 
changed, and the dominance of the cooperating areas has 
been shifted to the right hemisphere, may reflect the func-
tional plasticity of the sleep-deprived brain. 
During the recovery period after a  24-hour sleep depri-
vation in rats, the theta band activity (7.25–10.0  Hz) in-
creased both during the REM sleep and active wakeful-
ness [40]. In epileptics subjected to sleep deprivation, the 
excitability of the cortex increased, which indicates that 
the sleep deprivation in such patients may lead to an epi-
leptic seizure [116].

Changes in mental functions
A strong relationship was found between sleep time and 
the intensity of manic symptoms [117]. An animal model 
of mania could be obtained under conditions of the sleep 
deprivation experiment. However, since the procedures in-
volve stressful conditions: immobilization on a disk, isola-
tion from other animals, falling into water and soaking the 
fur, the outcomes would be difficult to interpret. Nonethe-
less, after 72 hours of wakefulness and before the rebound 
sleep, rats displayed approximately a  30-min period of 
symptoms resembling a manic state, namely insomnia, hy-
peractivity, irritability, aggression, hypersexuality and be-
havioural stereotypes. The administration of D1 receptor 
antagonists alleviated the symptoms, while of D1 agonists 
and opioids, intensified this behavioural pattern, which 
points to the mesolimbic contribution to developing be-
havioural changes after sleep deprivation [118]. The rela-
tionship between intensified maniacal behaviour and sleep 
loss is bidirectional: mania episodes may occur after sleep 
deprivation, but mania may also induce insomnia. After 
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The influence of sleep deprivation
The connection between the learning or memory processes 
and sleep seems to be well documented [129,130], although 
there are also reports denying this linkage [131,132]. The 
stimulating effect of  REM sleep on memory in humans 
is particularly unclear, since the antidepressants subdu-
ing REM sleep do not exhibit detrimental effects on mem-
ory, even if administered for a  long time. Furthermore, 
there are cases of patients with brainstem injuries that re-
sulted in permanent suppression of the REM sleep but did 
not disrupt their general functioning or produce memory 
disturbances.
Nonetheless, a number of data confirm memory impair-
ments due to sleep deprivation, particularly if the depriva-
tion covers a specific time window. During memory con-
solidation period, which can take from several minutes to 
days after the learning period, a transition occurs between 
the short-term and long-term memory. Rats exhibited im-
paired memorizing in behavioural tests when they were 
deprived of the REM sleep after the training. In a water 
maze experiment, either in a spatial version (involving ex-
ternal cues) or enclosed version, a rat learns to find an es-
cape platform immersed in opaque water, which involves 
the activity of the hippocampal structures. In a maze with 
a  visible platform, the platform is located differently at 
each trial and the rat learns to find it independently of 
the hippocampal functions, but the ability may be im-
paired due to striatal lesions. It has been shown that REM 
sleep deprivation impairs task acquisition in the spatial 
version of the water maze. Rats deprived of REM sleep 
for four  hours immediately after the training exhibited 
a  longer latency in finding the platform at the following 
trial in comparison with the rats deprived of sleep at other 
periods. Twelve-hour REM deprivation after the training 
at the visible version of the water maze had no influence 
on the training results  [133,134]. A  total sleep depriva-
tion at six hours before the water maze test brought about 
spatial memory impairments. Although the sleepy rats 
were capable of learning the task as quickly as the control 
group, they were far less capable of retrieving the task on 
the following day [135]. Mice deprived of REM sleep ei-
ther before or after the training session had worse results 

certain time intervals, as well as applicability to all age 
groups, the sleep deprivation therapy has been useful 
in different types of depressive syndromes. The side ef-
fects of sleep deprivation are relatively insignificant and 
include drowsiness or hypomania (REM deprivation in 
rats induced episodes of hypomania which is at the op-
posite end to depression  [125]). The sleep deprivation 
for therapeutic purposes can be applied either as a total 
deprivation (throughout the night and the following day, 
which makes up about 40 hours of wakefulness in total) 
or a  selective deprivation (period of sleep of no more 
than 3 hours during the first or second half of the night). 
Selective REM deprivation is considered to be even more 
effective, for its results are comparable to those obtained 
after administration of imipramine  [125]. However, in 
order to achieve significant mood improvement, selec-
tive sleep deprivation must be applied for at least one 
week and also involve the use of more complicated meth-
ods  [124]. Examining brain activity with the functional 
magnetic resonance partially explains why sleep depriva-
tion yields different results in depressive patients. The 
method indicates increased activity within certain regions 
of the brain, such as Brodmann’s area 32 in the cingulate 
gyrus, in depressive patients. If a patient reacts positively 
to the treatment with sleep deprivation, this activity de-
creases to the level characteristic of healthy individuals, 
while it does not in the patients whom sleep deprivation 
did not help [126]. 
Sleep deprivation can be applied also in the treatment of 
Parkinson’s disease. One-night wakefulness results in an 
improvement lasting for about one week, which consists 
in decreased tremor and muscle stiffness.  REM sleep 
restriction may play an important role in this process, 
as dopamine activity increases and the cholinergic activ-
ity decreases [127]. Neuroimaging confirms the existence 
of a relationship between the synaptic dopamine release 
within the anterior cingulate cortex and the antidepressive 
effect of sleep loss [128]. The improvement after sleep de-
privation probably takes place also through an augmen-
tation of adenosine activity which inhibits acetylocholine 
(REM loss increases the density of A1 subtype of adenos-
ine receptors) [127].
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the power of the theta and alpha waves as well as of beta 
waves in the 13–17.5 Hz range was found to increase only 
in the male subjects. After sleep deprivation, the reaction 
time among males was by 30% longer than under the con-
trol conditions, while the respective parameter among fe-
males increased only by 11%. It seems that the effects of 
sleep deprivation may be milder in women, allowing them 
to better cope with environmental demands under condi-
tions of sleep loss. However, after a 9-hour rebound sleep, 
most of the frequency bands did not regain their initial 
values only in the group of females [142]. 
However, another set of data shows a reverse relationship 
regarding the reaction time: it takes a longer time for the 
women to react (by pushing a button when a red point ap-
pears), but they make fewer mistakes than men do [143]. 
The authors suppose that although they are instructed 
to respond instantly, the women do not do so until they 
are certain that the reaction is correct. Such explanation 
is confirmed by the data indicating that women are more 
cautious and take fewer risky decisions after sleep depri-
vation [144], even though the assessment of impulsiveness 
did not show any differences between genders. 

Social aspects of sleep deprivation and fatigue
The reduction in sleep time causes disruption in perform-
ing tasks: the sleep-deprived individuals require more 
time than usual for performance and they make more 
mistakes. Survey studies revealed a  significant relation-
ship between the duration and quality of sleep among 
car drivers and the number of road accidents [145]. After 
sleep loss, the subjects taking tests on a  driving simula-
tor made more errors (driving over the road axis or too 
close to the roadside) and what is more, the sleepy driv-
ers tended to increase their average driving speed [146]. 
It has been confirmed that weariness caused by driving for 
a long time may intensify the effects of drowsiness, such as 
prolonged reaction time, whereas weariness itself does not 
affect the driving capability if the driver has a  sufficient 
sleep time [147]. In the case of motorcyclists, sleep depri-
vation reduces the difference between the morning and af-
ternoon levels of individual reactivity and deteriorates the 
testing results from both the periods  [148]. The driver’s 

in memory tests: pre-training REM deprivation induced 
earlier memory deficits, whereas post-training depriva-
tion resulted in the deficits appearing later [136]. Humans, 
when awoken repeatedly during a night, obtained better 
results in memorizing pairs of words if the waking took 
place after 10 minutes of each REM episode than when 
it happened after 40 minutes of sleep, and disrupted the 
completion of the sleep cycle [137]. A vast body of litera-
ture makes it possible to draw a conclusion that it is not 
only the REM but also the NREM sleep with all its stages 
that enhance the long-term memory processes (proce-
dural, semantic and episodic memory, and perceptual rep-
resentation memory system) [138]. Recent research [139] 
indicates that a  42-hour total sleep deprivation impairs 
operational memory in humans. The alterations, varying 
across individuals, include a decreased memory capacity 
and impaired concentration. 

Gender influence on the effects of sleep deprivation 
The effects of sleep deprivation were either assessed main-
ly in male participants or the gender factor was not taken 
into consideration. However, it seems natural that the re-
sults of sleep deprivation must correlate with gender-spe-
cific differences; the anatomical, functional and hormonal 
in particular. Nonetheless, literature reports include data 
confirming the gender-related consequences of the sleep 
loss. Experiments performed on mice did not corrobo-
rate the post-sleep deprivation differences between gen-
ders  [140]. In rats, however, after 4 days of  REM sleep 
deprivation and concurrent 30% loss of NREM sleep, the 
males exhibited less slow-wave and more REM rebound 
sleep during the light period than did the females, while 
during the dark period, the rebound sleep occurred only 
among the females, was longer than for the males, and de-
pended on the oestrus cycle [141]. 
In humans, after a  38-hour sleep deprivation, the EEG 
signal recorded in wakefulness showed different changes 
in men and women. In resting EEG, the signal power 
increased in all the frequency bands to the level be-
low 17.5 Hz in men, whereas in women, the signal power 
decreased in lower alpha bands (7.5–9.5 Hz) as well as 
in the delta band. During the trials involving attention, 
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improves the driver’s condition but that of  10–15  min, 
which does not lead to deep sleep and the resulting sleep 
inertia, seems to be most beneficial in the shortage of 
the optimum sleep time. A  10-min nap, particularly in 
a semirecumbent position, improves the driving capability 
for 1–2 hours [158–160].

SUMMARY

The first investigations into the effects of sleep depri-
vation in humans led to the findings indicating rela-
tively safe and transient consequences of sleep loss. 
However, a  growing body of evidence points out that 
sleep restriction, although inducing relatively small 
physiological effects (changes in the immune function, 
increased tendency to gain weight and to develop high 
blood pressure with all its consequences), not only leads 
to weariness but also causes a significant disruption in 
functioning, such as the deterioration of vision and per-
ception, weakened concentration, impaired memory, 
longer reaction time, increased number of errors, re-
duced precision of performance, occurrence of sleep 
microepisodes during wakefulness, schematic thinking, 
making inaccurate decisions, and emotional disorders. 
Moderate fatigue after 20–25 hours of sleeplessness im-
pairs task performance to an extent comparable with 
that caused by alcohol intoxication at the level of 0.10% 
blood alcohol concentration. The effects of a  chronic 
sleep loss or a shallow sleep maintained for several days 
tend to accumulate, leading to the disruption of cogni-
tive functions which is comparable to that after severe 
acute total sleep deprivation of several dozen  hours. 
Such effects hinder the correct performance at work, 
and in extreme cases (machine operation and vehicle 
driving), may pose hazard to the workers themselves 
and their environment.
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age is a significant factor which has influence on the num-
ber of drowsiness-related accidents and determines the 
time of the day or night when these accidents occur. Driv-
ers younger than 25 years of age seem to cause twice as 
many road accidents as the other age groups, although 
they do not make up the majority of drivers [149]. This is 
associated not only with the carelessness and overestimat-
ing one’s abilities that are characteristic of young people 
but also with the fact that older individuals can sometimes 
more efficiently cope with sleep deficiency  [150,151]. 
Young drivers cause accidents mainly at night, whereas 
the older ones mainly in the afternoon [149], which may 
be connected with the fact that many older drivers refrain 
from driving at night  hours and that the changes in the 
circadian pattern of activity develop with age.
After one night of sleeplessness, the ability to simultane-
ously perceive stimuli both in the central and peripheral 
areas of the visual field is impaired and the deficit inten-
sifies with the driving time, but is also age-dependent. 
While long-lasting and monotonous driving makes the vi-
sual field more narrow, intense drowsiness causes deficits 
within the whole field [61]. Sleep restriction increases the 
rate of risky behaviour, due to impaired ability to assess 
a situation [152], and of aggressive behaviour as well [120]. 
Prolonged microepisodes of sleep during driving consider-
ably reduce the driving safety  [59]. With regard to such 
parameters as the concentration of attention, reflexes, 
perceptiveness and accuracy of task performance, the ef-
fects of a 24-hour sleep deprivation, or of a 4–5-hour night 
sleep repeated over a period of one week, are similar to 
those induced by the 0.5–1‰ level of blood alcohol con-
centration [153–157]. 
In most of the European countries, the highest permissible 
blood level of alcohol in car drivers is 0.5‰, and the Pol-
ish law permits only the values below 0.2‰. While there 
are legal regulations that impose prosecution of drunk 
drivers, no restrictions apply to the drivers who show 
a comparable impairment of perceptiveness and reactivity 
due to sleep deprivation and who also pose a considerable 
hazard to other traffic participants. The only solution is 
to appeal to the common sense of such drivers. The most 
effective remedy for drowsiness is a brief nap: a 5-min nap 
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