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Abstract. Clinical and basic mechanism observations reveal interactions between neural and immune systems. These two 
systems create a complex network for recognizing danger to the host and its protection from outside pathogenic elements 
as well as from inside overreactions of inflammatory character. Here, we review the interactions of these two systems in 
relation to the effects of pesticides that clearly involve elements of cholinergic lymphocytic system. We discuss cellular and 
soluble elements of the immune system, which may be affected by pesticide exposure. We suggest that in-depth studies of 
the influence of pesticides on lymphocytes may contribute to the development of sensitive methods of measuring early 
adverse effects appearing in response to pesticide exposure. 
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 INTRODUCTION

Environmental toxicants that interact with specific com-
ponents of the immune system can damage immunocom-
petence by direct interaction with one or more types of 
the cell participating in an immune response and adversely 
affect their function. They may also indirectly affect the 
immune function through other organ systems (nervous 
and neuroendocrine). Among different groups of environ-
mental toxicants, organophosphorus (OP) pesticides play 
a particular role. OP pesticides penetrating the environ-
ment enter the human body and exert diversified toxic 
effects on the immune system. Immunotoxic effects of OP 
pesticides may be manifested by decreased immunity of the 
organism (immunosuppression), whereas its overactivation 

may induce hypersensitivity (allergy, autoimmunization) 

[1,2]. Relatively not much is known about the immu-

notoxic effects of OP pesticides [3], generally known as 

neurotoxins. As such, our current knowledge about their 

potential toxic effect on the immune system may be hypo-

thetically derived from studies of the nervous system [4].

All OP pesticides have anticholinesterase (AChE) activity 

and a common mechanism of toxicity. Phosphorylation of 

AChE causes accumulation of acetylcholine (ACh), over-

stimulation of cholinergic receptors, and consequently 

clinical signs of neurotoxicity. However, additional mac-

romolecular targets, e.g., direct action of some  OP pes-

ticides on cholinergic receptors, may alter the cascade of 

the events that follow AChE phosphorylation and thereby 
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modify the common mechanism [5]. Because cells of the 
immune system, mainly lymphocytes, express all choliner-
gic components found in the nervous system, it is prob-
able that OP pesticides may similarly exert toxic effects 
on this system. These pesticides may also indirectly affect 
immune function by acting on the central nervous system 
(CNS). Cells of the neuroendocrine system can be both the 
primary target of OP pesticides toxicity and the source of 
hormones and neurotransmitters possessing immunomod-
ulatory activity. Thus OP pesticide-induced alterations of 
neuroendocrine function could be an indirect mechanism 
responsible for an immunotoxic event. 

LYMPHOCYTIC CHOLINERGIC SYSTEM

Lymphocytes constitute a cholinergic system that is in-
volved in the regulation of immune function [6]. They ex-
press most of the components found in cholinergic nerves, 
including ACh, choline acetyltransferase (ChAT), high af-
finity choline transporter (ChT), muscarinic and nicotinic 
ACh receptors (mAChRs and nAChRs, respectively), and 
AChE [7]. On that basis, it was widely believed that the 
lymphocytic cholinergic system can participate in various 
neuro-immune interactions and contribute to the “cho-
linergic anti-inflammation pathway”. The “cholinergic 
anti-inflammation pathway”, discovered recently  [8–10], 
provides an efficient mechanism for neural inhibition of 
inflammation and interfaces CNS with immune system 
[9,11]. The finding that acetylcholine-secreting neurons 
of the parasympathetic nervous system suppress acute in-
flammation has coined for such a phenomenon the term 
“inflammatory reflex” [9]. An electron microscopic study 
has shown the existence of synaptic-like contact between 
nerve terminals and lymphocytes in thymic tissue [12]. 
Sympathetic and vagus innervation of the thymus, liver, 
heart, lungs, gastrointestinal tract, pancreas, and kidneys 
may provide the anatomical basis for co-regulation of 
tissue macrophages, dendritic cells, mast cells, Kupffer 
cells and other immune and non-immune cytokine-pro-
ducing cells. The possibility that noradrenaline released 
from sympathetic varicosities may influence thymocytes 
is strengthened by the fact that b-adrenoreceptors are 

expressed in the process of the thymocytes development 
and the ability of catecholamines to influence the respon-
siveness of the expression of T allo-antigens on these cells 
[13]. Thymic epithelial cells (TEC) form a microenviron-
ment that influences maturation and differentiation of 
thymocytes to T lymphocytes. The demonstration of their 
capacity to respond to catecholamines suggests that ad-
renergic stimulation may interfere with the regulation of 
immune functions. In particular, catecholamines influence 
the synthesis of IL-6, which is known to affect the T cell 
proliferative/differentiative program [14]. It has been hy-
pothesized that ACh also plays a role in the regulation of 
differentiation and maturation of thymocytes. ChAT posi-
tive nerve profiles were observed on days 17/18 of gesta-
tion [15]. Biological actions of ACh in the thymus are me-
diated through its interactions with cholinergic receptors. 
DNA sythesis of thymocytes significantly increases when 
cells are stimulated with ACh or muscarinic cholinergic 
agonists [16]. Cholinergic stimulation increases intracel-
lular second messenger, inositol 1,4,5-triphosphate (IP3) 
and guanosine 3’,5’-cyclic monophosphate (cGMP). The 
increase in IP3 and cGMP concentrations after choliner-
gic stimulation enhances thymocytes DNA synthesis. This 
suggests that differentiation and maturation of thymic 
lymphocytes may be indirectly regulated by TEC stimulat-
ed with cholinergic agonists. ACh takes part in the mutual 
interplay between developing T cells and thymic epithe-
lium, and thereby may influence the generation of T cell 
repertoire. Moreover, cholinergic agonists may influence 
T cell maturation affecting negatively thymocite apoptosis 
[17–19].
A functional role of cholinergic innervation of the hemo-
poietic compartment was also recently proposed in view 
of the demonstration of ChAT-immunoreactive nerve fi-
bre-like structures in rat femur bone marrow around he-
mopoietic islets [20]. However, the fact that ACh released 
from cholinergic nerve terminals is extremely labile in 
blood due to the presence of cholinesterases greatly un-
dermines the notion that ACh released from cholinergic 
nerve terminals can interact directly with AChRs on lym-
phocytes. It seems far more likely that non-neuronal ACh, 
released from T cells, and such cells as keratinocytes, 
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vascular endothelial cells or epithelial cells in the respi-
ratory and gastrointestinal tracts, modulates local antigen 
presenting cells (APCs) activity via interaction with cell 
surface molecules [7,21–23]. It was confirmed that a con-
siderable amount of ACh is contained in T lymphocytes 
and B lymphocytes [24]. T cells contain about three times 
more ACh compared with B cells, and CD4 positive cells 
show significantly higher levels of the transmitter com-
pared with CD8 positive cells. Choline uptake via ChT is 
the rate-limiting step in ACh synthesis catalyzed by ChAT 
in T lymphocytes. Whether ACh in lymphocytes is stored 
in vesicles is a matter of dispute [25]. According to some 
authors no structures histologically resembling synaptic 
vesicles have been detected in lymphocytes [26]. Probably 
ACh is synthesized by T lymphocytes when necessary and 
directly released [27]. However, the possibility that ACh 
in T lymphocytes is localized within a storage apparatus 
of some type cannot be ruled out. Tayebati et al. [28] have 
shown vascular ACh transporter (VAChT) immunore-
activity in both, T and B peripheral blood lymphocytes. 
An investigation performed with help of confocal laser 
microscopy pictures showing VAChT immunoreactivity 
in vesicle-like structures suggest that lymphocytes share 
with neurons the same ACh storage system. Studies per-
formed to detect the mRNA for ChAT and to measure 
ACh in thymic, splenic and peripheral blood lymphocytes 
have shown that cells of the immune system are capable of 
synthesizing, storing and releasing ACh [29].
AChE activity and immunoreactivity with anti-AChE anti-
bodies have been detected in lymphocytes. Although Szele-
nyi et al. [30] detected AChE activity in T cells but not in 
B cells, Ando et al. [ 31] and Tayebati et al. [28] found its 
expression in both subpopulations of lymphocytes. AChE 
gene is organized and sequentially spliced giving a distinct 
domains in its protein products. They include sites for al-
ternative splicing of the pre-mRNA at both the 5’ and 3’ 
ends. Alternative splicing allows the production of three 
distinct AChE variants (isoforms), “synaptic” (S), “eryth-
rocytic” (E) and “readthrough” (R), each with a differ-
ent carboxy (C)-terminal sequence. C-terminal sequences 
determine homologous assembly into AChE oligomers 
and their heterologous association with non-catalytic sub-

units that direct the subcellular localization of the protein. 
AChE-S forms tetramers that can attach covalently to 
a collagen-like protein. In AChE-E, a glucosyl bond near 
the C-terminus undergoes transamidation to attach the 
glycophosphatidylinositol group to protein, which anchors 
the mature AChE-E to the outer surface of cells. AChE-R 
does not seem to have any feature that allows for its at-
tachment to other molecules and remains monomeric and 
soluble. AChE-R appears in lymphocytes when these cells 
are induced under chemical or physical stress [32].
Physiological cues that induce AChE gene transcription 
include cell differentiation, reduced AChE levels, ACh-
mediated excitation elicited by exposure to anti-AChE 
agents, e.g., some OP pesticides, and various traumatic 
insults. Transcriptional activation of AChE gene is often 
associated with a shift in its splicing pattern, leading to ac-
cumulation of the rare AChE-R variant [33,34]. Recent 
analyses show that human lymphocytes (T and B) and 
APCs (dendritic cells and monocytes/macrophages) ex-
press both mAChRs and nAChRs. Messenger RNA en-
coding the M3, M4 and M5 subtypes of mAChRs has been 
detected in most human mononuclear leukocytes (MNLs), 
while expression of mRNAs encoding the M1 and M2 sub-
types varied substantially among individual subjects [28].
Ligand binding studies demonstrating the presence of 
nAChRs on human lymphocytes T and B and monocytes/
macrophages [35] have been confirmed by examination 
of functional and metabolic effects of nicotine and other 
nAChR agonists [25]. Sato et al. [36] analyzed mRNAs 
encoding nAChR subunits in human MNLs and detected 
expression of the a2, a5, a7, a10 and b2 subunits. It has 
been shown that CNS can downregulate inflammation by 
the a7 subunit-mediated inhibition of synthesis of tumor 
necrosis factor-a (TNF-a). The functional relevance of 
the macrophage nicotinic receptor a7 subunit has been 
tested using antisense oligonucleotides [37] and in the a7 
subunit-deficient mice [38]. In the presence of nicotine, 
inhibition of the a7 subunit restores the endotoxin-stimu-
lated TNF-a response; whereas gene knock-out mice are 
more sensitive to inflammatory stimuli by producing sig-
nificantly higher levels of serum TNF-a, IL-1 and IL-6 
during endotoxemia.
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THE EFFECT OF CHOLINERGIC SYSTEM ON 
LYMPHOCYTIC FUNCTION

According to Kawashima and Fuji [6] stimulation of T and 
B cells with ACh elicits intracellular Ca2+ signaling, up-
regulation of c-fos expression, increased nitric oxide syn-
thesis and IL-2-induced signal transduction. Acute stimu-
lation of nAChRs with ACh causes rapid and transient 
Ca2+ signaling in T and B cells, probably via a7 nAChR 
subunit-mediated pathways. Chronic ACh stimulation by 
contrast down-regulates nAChR expression and suppress-
es T cell activity. Activation of T cells with phytohemag-
glutinin or antibodies against cell surface molecules en-
hances lymphocytic cholinergic transmission by activating 
expression of ChAT and M3 or M5 mAChR. Activation 
of M3 or M5 AChRs generally increases phosphoinosit-
ide-specific phospholipase C activity and the release of 
the second messenger – inositol triphosphate. Figure 1 il-
lustrates numerous transduction and regulatory pathways 
that affect and are affected by the lymphocytic cholinergic 
system during immunological responses. Stimulation of 
T and B cells by ACh via mAChRs induces intracellular 
Ca2+ signaling that triggers nuclear signaling and up-regu-

lates gene expression, e.g., c-fos. This signal transducing 
factor has been shown to be induced in cells of central 
autonomic network by peripheral administration of lipo-
polysaccharide (LPS) and can be completely blocked by 
the dorsal vagal complex inactivation [39–41]. In this view, 
it has been proposed that area postrema may play a role in 
transducing immune signals relevant to regulation of neu-
ral behavior. Area postrema is a component of the dorsal 
vagal complex (DVC), and has a weak blood-brain-bar-
rier that may provide a contact with circulating mediators 
induced by LPS. In addition, area postrema contains im-
mune cells that express LPS receptors [42]. There is evi-
dence that area postrema lesion blocks IL-1-induced el-
evation of plasma adrenocorticotropin and corticosterone 
as well as c-fos expression in the paraventricular nucleus 
(PVN) [43]. The PVN of DVC-inactivated animals shows 
the attenuation of LPS-induced c-Fos-IR, compared with 
controls [44]. Previous studies demonstrated a critical role 
of catecholaminergic brainstem projection neurons in the 
mediation of hypothalamic pituitary axis (HPA) activation 
in response to peripheral immune activation [45]. Taken 
together, these findings support the hypothesis that neu-
roimmune activation through acetylcholine mediators and 
cholinergic system may act through c-fos activation. Lym-
phocytes not only directly react to ACh, but also through 
stimulation of TCR/CD3 and other cell surface molecules, 
and enhance this reactivity by the increased expression 
of both ChAT and mAChRs [6]. Muscarinic AChRs are 
involved in the enhancement of TCR-induced interleukin 
(IL)-2 production and IL-2 receptor expression in human 
T lymphocytes [46]. Thus mAChRs positively modulate 
cell growth in human lymphocytes by the autocrine mech-
anism [47,48].
Anticholinesterase insecticides that are mainly repre-
sented by carbamates and organophosphates produce 
acute toxicity via inhibition of AChE, a serine hydrolase. 
Inhibition of AChE occurs as a result of carbamylation or 
phosphorylation of serine hydroxyl at the active site of the 
enzyme. Serine hydrolase activity appears to be integral 
to diverse immune functions including: 1) serum comple-
ment activation [49], 2) target cell killing by T cells [50] 
and natural killer (NK) cells [51,52], 3) antigen stimulated 

ACh – acetylcholine; AChE-E – erythrocytic acetylcholinesterase isoform; AChE-R 
– readthrough acetylcholinesterase isoform; AcCoA – acetycoenzyme A; ChAT – choline 
acetyltransferase; CHT – high affinity choline transporter; DAG – diacyl glycerol; ER 
– endoplasmic reticulum; ICAM – 1 – intracellular adhesion molecule – 1; IP-3 – inositol-
1,4,5-triphosphate; mAChR – muscarinic Ach receptor; MAPK – mitogen activated protein 
kinase; MAPKK – MAP kinase kinase; MHC II – major histocompatibility complex class II; 
nAChR – nicotinic Ach receptor; PIP2 – phosphatidylinositol 4,5-biphosphate; PKC – pro-
tein kinase C; PLC – phospholipase C; TCR – T cell receptor.

Fig. 1. Diagram illustrating numerous transduction and regulatory 
pathways that affect and are affected by the lymphocytic cholinergic 
system upon interaction of lymphocytes (T cells) with antigen present-
ing cells.
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Ca2+ signaling in cytolytic T cells [53], 4) IL-2 signaling 
in lymphocytes [54], and 5) neutrophil chemotaxis [55], 
phagocytosis [56], and secretion of TNF-a by monocytes 
[57]. It has been shown that chemicals able to inhibit 
AChE activities, like OP and carbamate insecticides, act 
on lymphocyte proliferation, endotoxin-induced secretion 
of TNF-a from monocytes and IL-2 driven activity of NK 
activity, IL-2 driven cells. Carbamylation of cholinesterase 
and of serine hydrolase also share the same catalytic triad 
made of serine hydroxyl group, the imidazolium group of 
a histidine residue and d-carboxylate of an aspartic acid 
residue [58]. It is, however, not yet clear if the signal trans-
duction pathway triggered by carbamylation of serine hy-
drolases and AChE also involves the NF-kB factor. It is 
reasonable to expect that cross talk or pathway converge 
occurs when two different signals mediate a common ef-
fect. The NF-kB transcription factor pathway may be 
a convergence point. As a fact, one of the ways by which 
corticosteroids mediate part of their anti-inflammatory ef-
fect is the inhibition of NF-kB activity through the induc-
tion of the endogenous inhibitor IkBa [59,60].
Normally, upon interaction of T lymphocytes via TCR/
CD3 and CD4 or CD8 with antigen presenting cells, or 
interaction via cell surface molecules with vascular endo-
thelial cells or inflammatory cells, T cells show enhanced 
synthesis and release of ACh. This in turn can act, in au-
tocrine way, on mAChRs and nAChRs of T and B cells 
or other targets in the vascular microenvironment [27]. 
Acetylcholine is effective in suppressing endotoxin-induc-
ible pro-inflammatory cytokines, such as IL-1b, IL-6, and 
IL-18. However, the role of anti-inflammatory cytokine 
IL-10 in this process is doubtful since its release from 
endotoxin-stimulated macrophages is not affected by ace-
tylcholine. Stimulation of T and B lymphocytes by phyto-
hemagglutinin (PHA) and B-cell activator – Staphylococ-
cus aureus Cowan I – activates the lymphoid cholinergic 
system as evidenced by increasing synthesis and release of 
ACh and increased expression of mRNAs encoding ChAT 
and ACh receptors [7,46,61]. Mitogenic stimulation with 
PHA increases ACh levels in lymphoid cells and its release 
in supernatants [24]. Hence stimulation of lymphocytes 
with PHA activates the lymphoid cholinergic system by 

inducing an increased synthesis and release of ACh and 
augmenting the expression of mRNA encoding ChAT and 
cholinergic receptors.

THE IN VIVO EFFECTS OF LYMPHOCYTIC 
CHOLINERGIC SYSTEM

The expression of mAChRs subtypes was investigated in 
peripheral blood lymphocytes of bronchial asthma pa-
tients [62]. An increased expression of M2 and to a lesser 
extent of M5 receptors and no changes in M4 receptor 
were observed in blood lymphocytes of asthmatics com-
pared to the control group. The increase was related to 
bronchial hyperresponsiveness detected by methacholine 
challenge test. However, in experiments using guinea pigs, 
it was shown that chlorpyrifos which inhibits AChE and 
decreases M2 receptor responsiveness enhances broncho-
constriction [63]. Thus the role and association of M re-
ceptors with asthma is still not clear.
Various types of transmitters of the neuroendocrine-im-
mune network, including acetylcholine, may mediate 
abnormalities in the immune function. Allergic diseases 
such as allergic rhinitis, atopic dermatitis, gastro-intestinal 
allergies, and asthma seem to occur through the overpro-
duction of neuropeptides and cytokines [64].
Another evidence that changes in lymphocytic cholinergic 
activity are related to the immune dysfunction is derived 
from studies on the immune deficiency rat model, sponta-
neously hypertensive rats (SHRs) derived form the Wistar 
Kyoto rats (WKYs), and the immune accelerated mouse 
model, MRL/MpJ-Ipr/Ipr (MRL-Ipr) [65]. SHRs are 
known to exhibit immune deficiencies resulting from the 
emergence of a natural thymocytotoxic autoantibody, an 
age-related decline of T cell function and morphological 
changes in immune organs. Fujimoto et al. [29] discovered 
that ACh content in blood, MNLs (mononuclear leuko-
cytes), thymus and spleen is significantly lower in SHRs 
than in age-matched WKYs, as is expression of ChAT 
mRNA in circulating MNLs. Changes in the lymphocytic 
cholinergic system thus reflect immune deficiency related 
to T cell dysfunction and support the physiological role 
of ACh in immunomodulation. MRL-ipr mice spontane-
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ously develop a lupus-like autoimmune syndrome, the 
symptoms of which include nephritis due to production 
of antinuclear antibodies associated with massive lym-
phoadenopathy related to expansion of a unique T cell 
subset expressing Thy-1, CD3 and B220. Fujimoto et al. 
[66] found that the ACh content in the blood, thymus and 
spleen of MRL-1pr mice was significantly higher than in 
the age-matched MRL/MPJ +/+ (wild type) and BALB/c 
(control) mice.
It has been reported that centrally acting pharmacological 
agents, like CNI-1493, induce vagus nerve firing [67] and 
confer anti-inflammatory effects through activation of the 
cholinergic anti-inflammatory pathway in both local and 
systemic models of inflammation [68]. 
Collectively, these findings are consistent with a notion 
that lymphocytic cholinergic activity is related to the im-
mune system function and ACh, synthesized and released 
from T lymphocytes, acts as an autocrine and/or paracrine 
factor regulating immune function. These findings also 
suggest that a better understanding of the lymphocytic 
cholinergic system can provide important information 
about regulatory mechanisms that govern lymphocyte 
function and the way they may be affected by anticholines-
terase compounds such as OP pesticides.

ORGANOPHOSPHOROUS PESTICIDES ARE 
CAPABLE OF ALTERING LYMPHOCYTIC 
CHOLINERGIC SYSTEM

All OP pesticides have anticholinesterase properties and 
a potential common mechanism of immunotoxicity, i.e., 
phosphorylation of AChE responsible for the accumula-
tion of ACh and overstimulation of lymphocyte choliner-
gic receptors. At least four steps have to be involved in a 
cascade of reactions culminating in overt toxicity: 1) bind-
ing to and inhibition of an extensive number of AChE mol-
ecules with substantial impairment of ACh degradation; 
2) accumulation of ACh in lymphocytes or in so called 
”immunological synapses” formed between lymphocyte 
and antigen presenting cell; 3) excessive stimulation of 
lymphocyte cholinergic receptors; and 4) altered lympho-
cyte cellular functions in response to excessive stimulation 

of those receptors. Modulation by OP pesticides of any 
of the processes involved in acetylcholine synthesis, ace-
tylcholine release, cholinergic receptor binding, or signal 
transduction, concurrent with anticholinesterase expo-
sure, could therefore influence the progression of events 
from target enzyme (AChE) inhibition to expression of 
the effects of toxicity.  
The mechanism of AChE inhibition in T lymphocytes by 
OP pesticides may be similar to that observed in nerve 
cells [5]. Organophosphorus insecticides have been shown 
to cause a decrease in cholinergic muscarinic receptor 
mAChR in the brain and peripheral tissues. These chang-
es are believed to be involved in the development of tol-
erance to OP toxicity. mAChRs identified in circulating 
lymphocytes have been shown to be modulated similarly 
to the brain mAChRs following repeated OP exposure. 
Similarly, lymphocyte AChE activity was significantly 
inhibited and well correlated with the brain AChE activ-
ity during exposure, but the recovery was rapid relative 
to AChE activity in the brain [69]. OP pesticides act by 
phosphorlylating active serine site residue on AChE and 
thereby inhibit the catalytic degradation of ACh. AChE 
inhibition might evoke increase in the level of ACh in 
extracellular medium, e.g., blood plasma. However, high 
levels of butyrylcholinesterase (BChE) in blood and its ac-
tivity in metabolizing ACh makes unlikely the detection of 
ACh in blood or plasma. Surprisingly to these suggestions, 
Kawashima et al. [27], by using sensitive and specific ra-
dioimmunoassay for ACh detected significant amounts of 
ACh in the human blood and plasma (8.66 + 1.02 and 3.12 
+ 0.36 pmol ACh/ml, respectively). Thus these extra lev-
els of ACh, resulting from inhibition of AChE and BChE 
by OP pesticides together with those from T lymphocytes, 
may act as a modulator of immune responses.
T cells recognize antigen peptides through a nanometer 
scale gap between T cell receptor and major histocompat-
ibility complex (MHC) on APCs, referred to as an immu-
nological synapse [70]. Membrane domains (LFA-1 and 
ICAM-1) provide an organizational principle for compart-
mentalization within the immunological synapse that may 
help account for the longevity and specificity of signaling. 
Immunological synapse may form a microenvironment 
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in which T cell-released ACh is restricted from reach-
ing BChE. Thus ACh may achieve higher concentration, 
in particular when BChE and membrane bound AChE 
(isoform AChE-E) are inhibited by OP pesticide. ACh 
released from T cells induces (by autocrine mechanism) 
intracellular Ca2+ signaling in T and B cells via M3 and/or 
M5 mAChRs, leading to c-fos-mediated up-regulation of 
gene expression [7,25]. The presence of c-fos-binding sites 
in the promoters of key cholinergic genes (e.g., genes en-
coding AChE or ChAT in T cells) indicated that elevated 
c-fos levels might activate regulatory pathways leading to 
changes in the expression of proteins, mediating T cell im-
mune response [25,47,71].
Organophosphorus pesticides, first elicit a transient in-
crease in the amounts of ACh by increasing the survival 
of ACh at the immunological synapse and then increase T 
cell ChAT activity. This primary phase is connected with 
enhanced immunological activity of T cells and followed 
by secondary phase of suppressed T cell activity with stim-
ulation of AChE synthesis and suppression of ChAT syn-
thesis. The secondary phase represents a response of acute 
activation of AChRs and reduction in the bioavailability of 
ACh [35]. We speculate that in the late phase, an elevated 
c-fos protein level might activate only readthrough AChE 
(AChE-R) isoform synthesis. After exposure of T cells to 
OP pesticides (AChE inhibitors), a pronounced increase 
is observed in the levels of this unspliced mRNA species 
in which pseudo-intron 4 is retained in the mature tran-
script, encoding AChE-R isoform. No changes were seen 
in either the transcript containing the alternative 3’ exon 6 
and encoding the synaptic form of the enzyme (AChE-S) 
or in the transcript carrying alternative exon 5 and encod-
ing the hematopoietic form of AChE (AChE-E). Thus in 
the late phase, OP pesticides mediated not only enhanced 
transcription AChE gene in T cell, but also modified al-
ternative splicing from this gene, leading to de novo syn-
thesis of the unique, secretable AChE-R isoform [33]. T 
cell-secreted AChE-R appears as monomer and remains 
soluble in the immunological synapse and thus it may pos-
sibly ease ACh hydrolysis. 
Increased ACh concentration in immunological synapse 
after exposure to OP pesticides may be also involved in 

autocrine activation of T cells through stimulation of 
mAChRs and thus in the induction of IL-2 production 
and IL-2 receptor expression. Nomura et al. [48] indicated 
that mitogen-activated protein (MAP) kinases, extracel-
lular signal-regulated protein kinases (ERK) and the c-jun 
NH2-terminal kinases (JNK), but not the p38 MAP kinas-
es, are involved in the mAChRs-mediated enhancement 
of IL-2 production by stimulating AP-1 activity. There are 
some reports that MAP kinase signal transduction path-
ways such as: 1) Ras, the JNK cascade, and one or more of 
AP-1, and 2) Raf-1, MEK1 and ERK, are involved in IL-2 
gene transcription in T cells [72,73]. Therefore, ERK and 
JNK may activate AP-1 via activation of c-fos and c-jun, 
respectively [73]. Thus the transcription factor AP-1 and 
MAP kinase signal transduction pathway seem to be in-
volved in the AChR-receptor-mediated enhancement of 
IL-2 synthesis by T cells and activation of their prolifera-
tion after ACh concentration increase in immunological 
synapse after inhibition of AChE activity by OP pesticides 
(Fig. 2). 
The study of toxic mechanisms of OP pesticides has earlier 
focused on their interaction and irreversible inhibition of 
BChE and AChE, and little was known about interaction 
with ACh receptors (AChRs). Such an action of OP pes-
ticides was evaluated by Pope [5]. While it is difficult to 
compare relative potencies between reversible (i.e., recep-
tor binding) and irreversible (i.e., BChE or AChE phos-
phorylation) interactions, extremely low concentrations of 
OP pesticides required to inhibit T cell AChE compared 
to those necessary for interaction with nAChRs suggest 
that such additional actions on nAChRs may have, under 
most conditions, little practical relevance. In contrast, sev-
eral studies [5] have reported that some OP pesticides can 

Fig. 2. Diagram illustrating the effect of OP pesticides on T cell dif-
ferentiation.
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interact directly with mAChR at much lower concentra-
tions and may change the amount of ACh present in im-
munological synapse.
Modulation of ACh synthesis by T cell and its release to 
immunological synapse may play an important role in tox-
icity of some OP pesticides. High-affinity choline uptake, 
the rate-limiting step in ACh synthesis in lymphocytes, 
may be reduced by some OP pesticides which possess 
a similar anti-cholinesterase potency but different acute 
toxicity. Choline uptake by T cell is regulated by intracel-
lular cAMP levels, which in turn can be affected by acti-
vation of M4 mAChR. There is some evidence that such 
a receptor is also present in T cells [6,25]. We might specu-
late that some OP pesticides, e.g., parathion and chlorpy-
rifos (their oxons), can selectively activate these subtypes 
of muscarinic receptors, and cAMP formation could be 
reduced with a concomitant reduction in choline uptake 
and ACh synthesis. The direct activation of M4 receptor 
by both chlorpyrifos oxon and paraoxon could therefore 
reduce ACh synthesis and indirectly limit the amount of 
acetylcholine accumulated in the immunological synapse 
following BChE and AChE inhibition. Chlorpyrifos oxon 
is more potent at this limiting action and its toxicity is 
less acute than that of paraoxon. Li et al. [74] found that 
some of OP pesticides, e.g., dimethyl 2,2-dichlorovinyl 
phosphate and diisopropyl methylphosphonate markedly 
inhibit the activities of natural killer cells and cytotoxic T 
lymphocytes. These pesticides probably inhibited gran-
zyme activity by decreasing choline uptake and ACh syn-
thesis in lymphocytes and killer cells.
The presented information provide a compelling picture 
in which lymphocytes constitute a cholinergic system in-
volved in the regulation of immune function. Activation 
of T cells mediated by APCs (dendritic cells or macro-
phages) or PHA enhances lymphocytic cholinergic trans-
mission by activating ACh synthesis. This function of T 
cell cholinergic system may be disturbed by OP pesticides. 
Organophosphorus pesticides may directly modulate this 
system by increasing ACh concentration in immunological 
synapse (when T cell interact with APC) or directly act on 
muscarinic ACh receptors. 

ORGANOPHOSPHOROUS PESITICDES MAY 
INDIRECTLY AFFECT LYMPHOCYTES

It has been suggested that OP pesticides may also indi-
rectly influence the immune T cell function by affecting 
CNS regions that possess high AChE activity and clearly 
detectable mAChRs activity. The hippocampus-limbic 
system is the region of the brain especially susceptible to 
OP pesticides. This system directly affects hypothalamus 
and brainstem involved in immune regulation [75,76]. 
The hypothalamus releases corticotropin-releasing 
factor (CRF) involved in the regulation of adrenocor-
ticotropic hormone (ACTH) secretion from the pitu-
itary gland. Then ACTH, through an endocrine action, 
regulates the release of adrenal glucocorticoids. These 
steroids have been known to exert strong effects on vari-
ous metabolic and immunologic functions of T cells and 
other immune cells. CRF appears to exert also a more 
direct effect on the brainstem centers as well as effects 
on immune regulation through direct actions on the au-
tonomic nervous system that involve neurotransmitters, 
epinephrine and norepinephrine. These catecholamines 
interact with lymphocytes to mediate suppression of the 
immune response by beta-adrenergic receptors [77]. 
The diffusible immuno-modulatory network, which 
includes glucocorticoids and catecholamines is rather 
slow, distributed in differen organs and dependent on 
concentration gradients. By contrast, the cholinergic im-
munomodulatory pathway by the vagus nerve is discrete 
and localized in tissues where immunological response 
originate [8,78]. The notion that parasympathetic nerves 
(cholinergic nerves) interact directly with inflammatory 
cells via nAChR-mediated pathways was proposed by 
Tracey [9] following his observations on effectively in-
hibited release of TNF-a from macrophages in vitro by 
ACh and nicotine.
The existence of such a functional link between the im-
mune system and CNS suggests that the interaction of 
OP pesticides and/or its metabolites with a component of 
the hippocampus-limbic system, resulting in its changed 
function, may indirectly affect T cell immune functions. 
Such an interaction could conceivably result in either 
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an enhanced or suppressed release of neurotransmit-
ters (e.g., hormones, glucocorticoids, catecholamines 
or ACh) possessing T cell immunomodulatory activity. 
Thus if a certain level of neurotransmitter or hormone 
influences the development and/or magnitude of an im-
mune response, OP pesticide-induced alteration of neu-
roendocrine function would be an indirect mechanism 
responsible for an immunotoxic event. It has been sug-
gested that the immune-to-brain communication could 
be achieved through two main pathways, neural and hu-
moral. The former signals the occurring inflammation to 
the brain through the activation of vagus nerve sensory 
fibers. Immunogenic stimuli activate nervous afferents 
directly by releasing cytokines from dendritic cells, mac-
rophages, and other vagal-associated immune cells, or 
indirectly through the chemoreceptive cells located in 
vagal paraganglia [78]. The transmission of cytokine-de-
pendent signals to the brain through the vagal sensory 
neurons takes place according to the magnitude of the 
immune challenge [79–82]. It is likely that the vagal af-
ferent neural pathway plays a dominant role in mild to 
moderate peripheral inflammatory responses, whereas 
acute, robust inflammatory responses signal the brain 
primarily via humoral mechanism. The humoral path-
way is preferred by the immune system to communicate 
with the brain, especially in case of systemic immune 
challenge [83–86]. It is, however, still unclear how the 
circulating cytokines interact with brain structures in-
volved in the anti-inflammatory response, and how they 
can affect synthesis of cytokines originating from CNS.
Conversely, the brain-to-immune communication pro-
ceeds via b-adrenoreceptors, catacholamines and gluco-
corticoids; the latter mainly through the suppression of 
nuclear factors.
Carbamate insecticides, like OP pesticides, inhibit ChE 
and induce immunosuppression by downregulating T-
cell proliferation, IL-2 production, and IFN-g produc-
tion [87]. It could be speculated whether modulation of 
the immuno-neuro-endocrine system through the com-
mon target – AChER – is shared by both classes of pes-
ticides. 

CONCLUSIONS

Comprehension of the direct and indirect effects of or-
ganophosphorous pesticides on the immune system could 
lead to a better understanding of pesticide toxicity so that 
more effective preventive measures could be taken. In 
neurotoxicology, there is a need for sensitive indicators 
reflecting subclinical nervous system insult especially due 
to environmental chemicals causing neurological impair-
ment and illness after chronic low-dose exposure. Now we 
can state that interaction of OP pesticides with neural cho-
linergic system is often accompanied by similar changes 
involving components of such system present in lympho-
cytes. On this basis, indirect strategies may be developed 
to investigate neural cell function parameters by methods 
using accessible cells like lymphocytes. The validity of sur-
rogate markers of biochemical events occurring in the ner-
vous system has been documented by studies performed 
on laboratory animals and in humans [88]. Applicability 
of this approach in conventional population studies of en-
vironmental OP pesticides remains to be demonstrated. 
However, data on the effect of OP pesticides on receptors 
and signal transduction pathways in peripheral lympho-
cytes suggest useful applications of certain surrogate mark-
ers in mechanistic in vivo studies of neurotoxicity of these 
compounds and, possibly, in assessing early biochemical 
effects of OP pesticides in humans. The use of peripheral 
lymphocytes as indicators of effects exerted by OP pesti-
cides would offer obvious advantages. Most methods for 
measuring neurotoxicity of OP pesticides are highly in-
vasive. Blood lymphocytes can be obtained in a relatively 
noninvasive manner from subjects who have been exposed 
to given OP pesticides and their use may circumvent ethi-
cal and feasibility constrains precluding direct assessment 
of neurotoxicity in the intact organism. 
In our opinion, characterization of lymphocytic choliner-
gic markers may be a useful starting point for finding out 
whether their assessment can be used for exploring the 
status of homologous brain markers. The development of 
the same bands of immunoreactivity in lymphocytes and 
stratum suggests that markers in question are the same 
in both types of tissue [28]. The observed expression of 
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ACh, ChAT, AChE and VAChT by all blood lymphocytes 
as well as in brain cholinergic areas suggest that they may 
represent a more reliable marker of cholinergic neuro-
transmission than muscarinic receptors, of which M1 sub-
type is mostly diffused in the brain, but not expressed by 
peripheral blood lymphocytes [89–91]. 
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